Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082138

RESUMO

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Assuntos
Infecções por Bunyaviridae , Encefalomielite , Orthobunyavirus , Gravidez , Feminino , Bovinos , Animais , Camundongos , Infecções por Bunyaviridae/veterinária , Orthobunyavirus/genética , Genótipo , Ruminantes
2.
Vaccine ; 41(33): 4907-4917, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37400284

RESUMO

Live rabies vaccines have advantageous features that can facilitate mass vaccination for dogs, the most important reservoirs/transmitters of rabies. However, some live vaccine strains have problems in their safety, namely, risks from the residual pathogenicity and the pathogenic reversion of live vaccine strains. The reverse genetics system of rabies virus provides a feasible option to improve the safety of a live vaccine strain by, for example, artificially introducing attenuating mutations into multiple viral proteins. It was previously demonstrated in separate studies that introduction of amino acid residues Leu at position 333 in the viral glycoprotein (G333), Ser at G194, and Leu/His at positions 273/394 in the nucleoprotein (N273/394) enhance the safety of a live vaccine strain. In this study, to test our hypothesis that combinational introduction of these residues would significantly increase the safety level of a vaccine strain, we generated a novel live vaccine candidate, ERA-NG2, that is attenuated by mutations at N273/394 and G194/333, and we examined its safety and immunogenicity in mice and dogs. ERA-NG2 did not cause any clinical signs in mice after intracerebral inoculation. After 10 passages in suckling mouse brains, ERA-NG2 retained all of the introduced mutations except the mutation at N394 and the highly attenuated phenotype. These findings indicate that the ERA-NG2 is highly and stably attenuated. After confirming that ERA-NG2 induced a virus-neutralizing antibody (VNA) response and protective immunity in mice, we immunized dogs intramuscularly with a single dose (105-7 focus-forming units) of ERA-NG2 and found that, at all of the tested doses, the strain induced a VNA response in dogs without inducing any clinical signs. These findings demonstrate that ERA-NG2 has a high level of safety and a substantial level of immunogenicity in dogs and thus is a promising live vaccine candidate that can facilitate vaccination in dogs.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Cães , Camundongos , Raiva/prevenção & controle , Raiva/veterinária , Proteínas Virais/genética , Mutação , Vacinas Atenuadas , Anticorpos Antivirais
3.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223171

RESUMO

A recent study demonstrated the possibility that migratory birds are responsible for the global spread of avian rotavirus A (RVA). However, little is known about what types of RVAs are retained in migratory birds. In this study, to obtain information on RVA strains in migratory birds, we characterised an RVA strain, Ho374, that was detected in a faecal sample from a gull species (Larus sp.). Genetic analysis revealed that all 11 genes of this strain were classified as new genotypes (G28-P[39]-I21-R14-C14-M13-A24-N14-T16-E21-H16). This clearly indicates that the genetic diversity of avian RVAs is greater than previously recognised. Our findings highlight the need for investigations of RVA strains retained in migratory birds, including gulls.


Assuntos
Charadriiformes , Infecções por Rotavirus , Rotavirus , Animais , Aves , Genoma Viral , Genótipo , Filogenia , Rotavirus/genética , Infecções por Rotavirus/veterinária
4.
J Vet Med Sci ; 84(11): 1508-1513, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36171109

RESUMO

The rabies virus strain Komatsugawa isolated from a dog in Tokyo in the 1940s retains biological properties as a field strain, providing an effective model for studying rabies pathogenesis. To facilitate molecular studies on the pathogenesis, this study aimed to establish a reverse genetics system for the Komatsugawa strain. By transfecting the full-length genome plasmid of this strain, infectious virus with artificially introduced genetic markers in its genome was rescued. The recombinant strain had biological properties similar to those of the original strain. These findings indicate that a reverse genetics system for the Komatsugawa strain has successfully been established.


Assuntos
Doenças do Cão , Vírus da Raiva , Raiva , Cães , Animais , Vírus da Raiva/genética , Genética Reversa/veterinária , Raiva/veterinária , Plasmídeos/genética , Tóquio , Doenças do Cão/genética
5.
J Virol ; 96(18): e0081022, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069552

RESUMO

Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.


Assuntos
Vírus da Raiva , Grânulos de Estresse , Proteínas da Matriz Viral , Aminoácidos/metabolismo , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Interferons/imunologia , Proteínas Quinases/imunologia , RNA Viral/metabolismo , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade , Ribonucleoproteínas/metabolismo , Grânulos de Estresse/genética , Grânulos de Estresse/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749287

RESUMO

Avian rotavirus A (RVA) is one of major enteric pathogens that cause diarrhoea in young avian individuals. Importantly, some of the avian RVA strains of G18P[17] genotype are naturally transmitted to and cause clinical diseases in mammalian species, indicating their potential risks to animal health. Although molecular information on the pathogenesis by avian RVA strains will be useful for estimating their risks, the absence of a reverse genetics (RG) system for these strains has hindered the elucidation of their pathogenic mechanisms. In this study, we aimed to establish an RG system for the avian G18P[17] prototype strain PO-13, which was isolated from a pigeon in Japan in 1983 and was experimentally shown to be pathogenic in suckling mice. Transfection with plasmids expressing 11 genomic RNA segments of the strain resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the PO-13 strain was successfully established. The rescued recombinant strain rPO-13 had biological properties almost identical to those of its wild-type strain (wtPO-13). Notably, both rPO-13 and wtPO-13 induced diarrhoea in suckling mice with similar efficiencies. It was thus demonstrated that the RG system will be useful for elucidating the pathogenic mechanisms of the PO-13 strain at the molecular level. This is the first report of the establishment of an RG system for an avian RVA strain.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Columbidae , Diarreia/veterinária , Genoma Viral , Genótipo , Mamíferos , Camundongos , Filogenia , Genética Reversa/métodos , Rotavirus/genética , Infecções por Rotavirus/veterinária
7.
J Gen Virol ; 103(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175915

RESUMO

Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.


Assuntos
Doenças das Aves/virologia , Genoma Viral , RNA Viral , Infecções por Rotavirus/virologia , Rotavirus/classificação , Animais , Aves
8.
Vaccine ; 39(28): 3777-3784, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34092430

RESUMO

To improve the safety of genetically modified live rabies vaccine strains, most studies have utilized an attenuating Arg-to-Glu mutation at position 333 in the glycoprotein (G333), which is responsible for attenuation of the live vaccine strain SAG2. The Glu residue requires two nucleotide substitutions to revert to pathogenic Arg, thus significantly lowering the probability of pathogenic reversion caused by the Glu-to-Arg mutation at G333. However, only one nucleotide substitution is sufficient to convert the Glu residue to another pathogenic residue, Lys, and thereby to cause pathogenic reversion. This indicates a potential safety problem of SAG2 and the live vaccine candidates attenuated by Glu at G333. In this study, aiming to solve this problem, we examined the utility of a Leu residue, which requires two nucleotide substitutions to be both Arg and Lys, as an attenuating mutation at G333. Using a reverse genetics system of the live vaccine strain ERA, we generated ERA-G333Leu by introducing an Arg-to-Leu mutation at G333. Similar to ERA-G333Glu, which is attenuated by an Arg-to-Glu mutation at G333, ERA-G333Leu did not cause obvious clinical signs in 6-week-old mice after intracerebral inoculation. Importantly, after 10 passages in suckling mouse brains, ERA-G333Glu acquired a pathogenic Lys or Arg at G333 and a high level of lethality in mice, whereas ERA-G333Leu retained the attenuating Leu at G333 and only showed a modest level of virulence probably caused by a mutation at G194. In addition, ERA-G333Leu and ERA-G333Glu induced neutralizing antibody response and protective immunity in mice with similar efficiencies. The results demonstrate that, compared to ERA-G333Glu, ERA-G333Leu is more stably attenuated, also indicating the high utility of a Leu residue as an attenuating mutation at G333 in the development of live rabies vaccine strains with a high level of safety.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Glicoproteínas/genética , Camundongos , Raiva/prevenção & controle , Vacina Antirrábica/genética , Vacinas Atenuadas/genética
9.
J Gen Virol ; 102(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891533

RESUMO

We previously reported that the avirulent fixed rabies virus strain Ni-CE induces a clear cytopathic effect in mouse neuroblastoma cells, whereas its virulent progenitor, the Nishigahara strain, does not. Infection with Nishigahara and Ni-CE mutants containing a single amino acid substitution in the matrix protein (M) demonstrated that the amino acid at position 95 of M (M95) is a cytopathic determinant. The characteristics of cell death induced by Ni-CE infection resemble those of apoptosis (rounded and shrunken cells, DNA fragmentation), but the intracellular signalling pathway for this process has not been fully investigated. In this study, we aimed to elucidate the mechanism by which M95 affects cell death induced by human neuroblastoma cell infection with the Nishigahara, Ni-CE and M95-mutated strains. We demonstrated that the Ni-CE strain induced DNA fragmentation, cell membrane disruption, exposure of phosphatidylserine (PS), activation of caspase-3/7 and anti-poly (ADP-ribose) polymerase 1 (PARP-1) cleavage, an early apoptosis indicator, whereas the Nishigahara strain did not induce DNA fragmentation, caspase-3/7 activation, cell membrane disruption, or PARP-1 cleavage, but did induce PS exposure. We also demonstrated that these characteristics were associated with M95 using M95-mutated strains. However, we found that Ni-CE induced cell death despite the presence of a caspase inhibitor, Z-VAD-FMK. In conclusion, our data suggest that M95 mutation-related cell death is caused by both the caspase-dependent and -independent pathways.


Assuntos
Efeito Citopatogênico Viral , Vírus da Raiva , Raiva/virologia , Proteínas da Matriz Viral/genética , Substituição de Aminoácidos , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Vírus da Raiva/genética , Vírus da Raiva/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...